Stable Periodic Waves in Coupled Kuramoto–Sivashinsky–Korteweg–de Vries Equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Running head: Stable periodic waves in coupled KS-KdV equations Stable Periodic Waves in Coupled Kuramoto-Sivashinsky – Korteweg-de Vries Equations

Periodic waves are investigated in a system composed of a Kuramoto Sivashinsky – Korteweg de Vries (KS-KdV) equation linearly coupled to an extra linear dissipative one. The model describes, e.g., a two-layer liquid film flowing down an inclined plane. It has been recently shown that the system supports stable solitary pulses. We demonstrate that a perturbation analysis, based on the balance eq...

متن کامل

Coupled Korteweg-de Vries equations

When a system supports two distinct long-wave modes with nearly coincident phase speeds, the weakly nonlinear and linear dispersion unfolding generically leads to two coupled Korteweg-de Vries equations. In this paper, we review the derivation of such systems in stratified fluids, extending previous studies by allowing for background shear flows. Coupled Korteweg-de Vries systems have very rich...

متن کامل

Dynamics of Solitary-waves in the Coupled Korteweg-De Vries Equations

We find new analytic solitary-wave solutions, having a nonzero background at infinity, of the coupled Korteweg-De Vries equation, using the auxiliary function method. We study the dynamical properties of the solitary-waves by numerical simulations. It is shown that the solitary-waves can be stable or unstable, depending on the coefficients of the model. We study the interaction dynamics by usin...

متن کامل

Solitary waves of a coupled Korteweg-de Vries system

In the long-wave, weakly nonlinear limit a generic model for the interaction of two waves with nearly coincident linear phase speeds is a pair of coupled Korteweg-de Vries equations. Here we consider the simplest case when the coupling occurs only through linear non-dispersive terms, and for this case delineate the various families of solitary waves that can be expected. Generically, we demonst...

متن کامل

The Time-Fractional Coupled-Korteweg-de-Vries Equations

and Applied Analysis 3 Subject to the initial condition D α−k 0 U (x, 0) = f k (x) , (k = 0, . . . , n − 1) , D α−n 0 U (x, 0) = 0, n = [α] , D k 0 U (x, 0) = g k (x) , (k = 0, . . . , n − 1) , D n 0 U (x, 0) = 0, n = [α] , (11) where ∂α/∂tα denotes the Caputo or Riemann-Liouville fraction derivative operator, f is a known function, N is the general nonlinear fractional differential operator, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Physical Society of Japan

سال: 2002

ISSN: 0031-9015,1347-4073

DOI: 10.1143/jpsj.71.2700